(NAwA—TM—4234) A PROPUSED KALMAN FILTER
ALGORITHM FDR ESTIMATION OF UNMEASURED
GUTPUT VARTIADBLES FGR AN F100 TURBNFAN ENGINE
(NASA) 32 D gscL 21E

H1/07

0001547







NASA Technical Memorandum 4234

A Proposed Kalman Filter
Algorithm for Estimation of
Unmeasured Output Variables
for an F100 Turbofan Engine

Gurbux S. Alag
PRC System Seruvice,
Edwards, California

Glenn B. Gilyard

Ames Research Center

Dryden Flight Research Facility
Edwards, California

NASA

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1990






A PROPOSED KALMAN FILTER ALGORITHM FOR ESTIMATION OF
UNMEASURED OUTPUT VARIABLES FOR AN F100 TURBOFAN ENGINE

Gurbux S. Alag* Glenn B. Gilyard**
PRC Systems Service NASA Amcs Research Center
Edwards, CA Dryden Flight Rescarch Facility
Edwards, CA
Abstract CIVV fan inlet guide vane angle, deg
To develop advanced control systems for optimiz- DEEC digital electronic enginc control
ing aircraft cnginc performance, unmeasurable output Dnoz nozzle drag, Ib
variablcs must be estimated. The estimation has to be Draum ram drag, Ib
done in an uncertain environment and be adaptable to .
. . . d difference
varying degrees of modeling errors and other varia-
tions in engine behavior over its operational life cycle. E ¢xpectation operator
This paper presents an approach to estimate unmea- EMD engine model derivative
sured output variables by explicitly modcling the cf-
. : . . e state error vector
fects of off-nominal engine behavior as biases on the
measurable output variables. A state variable modcl fg gross thrust, 1b
accommodating off-nominal behavior is devcloped for Fyp net propulsive thrust, Ib
the engine, and Kalman filter concepts are uscd to cs- 1 identity matrix
timate the required variables. Results arc presented K Kalman filter gain
from nonlinear engine simulation studics as well as the [ J
application of the estimation algorithm on actual flight N an rotor speed, rpm
data. The formulation presented has a wide range of Ny core rotor speed, rpm
application since it is not restricted or tailored to the P Riccati matrix
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measurement noise covariance matrix

SMr fan stall margin



SMyc high compressor stall margin

SOAPP state-of-the-art propulsion program

SSM stcady state model

SVM statc variable model

TMT turbine metal temperature, °R

Ty s compressor inlet total temperature, °R

Try burmer inlet total temperature, °R

Tr, bumer exit total temperature, °R

Try s low turbine inlet total temperature, °R

Ty afterbumner inlet total temperature, °R

Tr, nozzle throat total temperature, °R

u control input vector

WCran corrected fan air flow, lb/sec

WChpc corrected compressor air flow, 1b/sec

We main burner fuel flow, Ib/hr

wy statc excitation noise

w2 measurcment noise

T state vector

Y output vector

YVaur vector of auxiliary, (unmeasured)
output variables

z augmented state vector

variation from trim values

Superscripts
T, transposc of a matrix

~

estimated value of variable

derivative
Subscript
b output bias term
m flight or simulated data
N.L. nonlincar
t trim, initial, or stcady state
1 augmented system matrices

Introduction

Efforts to improve aircraft turbine engine cfficiency
have led to an increasc in the number of engine control

variables and a corresponding increase in the complex-
ity of control laws. Control laws for current engines
arc based on classical control theory and empirical
schedules for a nominal engine. Classical control the-
ory has served well for the current and older engines.
The design of futurc fighters as multifunction aircraft
and devclopment of integrated flight/propulsion con-
trol systems, however, require sophisticated control
systems capable of obtaining the maximum perform-
ance from the engine. Optimal control techniques us-
ing modem control theory are required to obtain ad-
ditional gains in engine performance. For modern air-
craft, accounting for enginc variations through designs
based on predetermined control schedules is increas-
ingly difficult because of the increased complexity and
increased number of control effectors on the engines.
Enginc-to-engine componcnt variations, engine dete-
rioration, and off-nominal behavior are difficult to ac-
count for in the design of control system schedules.

An adaptive control algorithm, which computes op-
timal control trim settings for the engine while maxi-
mizing the vehicle performance for a given flight con-
dition, accounts for these variations better than gain
scheduling. Specifically, an adaptive trim control sys-
tem computes and applics an incremental steady state
trim to enhance the engine performance.!

For over a decade, the National Aeronautics and
Space Administration (NASA) Ames Research Cen-
ter, Drydcn Flight Rescarch Facility (Ames-Dryden)
has conducted a multidisciplinary flight research pro-
gram on an F-15 airplane. Significant portions of this
research involved the flight evaluation of advanced
propulsion control concepts in programs such as digi-
tal electronic engine control (DEEC), the F100 engine
model derivative (EMD), and highly integrated digi-
tal electronic control (HIDEC).2 The increased perfor-
mance and improved fucl economy demonstrated on
the F-15 HIDEC rescarch vehicle is the basis of the
performance secking control (PSC) program, which
will provide additional improvements in these areas.

Ames-Dryden, McDonncll Aircraft Company, and
Pratt & Whitney are currently developing and demon-
strating an adaptive PSC system in flight on a NASA
F-15 airplane powercd by F100 EMD engines. The
PSC systcm optimizes aircraft performance by apply-
ing adaptive trim control to the propulsion system op-
crating in a pscudo-stcady-state cruise mode. The
trim schedules are determined for a highly nonlin-
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ear propulsion system which has system and measure-
ment noise, unmeasurable parameters, and sensitivity
1o normal dcterioration over its life cycle.

Figure 1 shows the adaptive trim control structure
used for the PSC. The state variable model (SVM)
and the stcady-state model (SSM) which model the dy-
namic and steady-state behavior of a nominal engine,
arc key components of the system. These modcls are
stored onboard the aircraft in a table look-up form and
are discussed in more detail in the following scction.

These models are used in formulating the propulsion
system modcl (PSM) which represents a small pertur-
bation model of the actual flight propulsion system.
The PSM contains relations which provide estimates
of performance measures (such as augmentor effects,
thrust, and stall margins) and constraint equations. A
lincar programming algorithm is used to find the opti-
mal solution and these commands arc then applicd to
the engine through the DEEC.

The values of output variables, which are often not
directly measurable, are needed for the optimization
algorithm uscd in the PSC. These variables are csti-
mated under changing levels of engine health, man-
ufacturing differences between engines, and other off-
nominal behavior. Accommodating these performance
variations in engincs has been investigated in two re-
cent studies.*

Reference 3 presents an algorithm for estimating the
causc and level of off-nominal enginc opcration by us-
ing a Kalman filtcr algorithm to cstimate five engine
factors. These five factors, rceferred to as component
deviation factors (CDF), compcnsate for off-nominal
performance. These factors were cstimated by treat-
ing them as biascs, and the original state vector was
augmented to give five additional states.’ Thesc five
factors are not explicitly used in the optimization algo-
rithm and their physical significance is unclear because
the formulation does not account for biases, prediction
crrors, and Reynolds number cffects. Since the coeffi-
cients with respect to the CDF parameters arc requirced
in the Kalman filter development, the CDF formulation
requires detailed modeling of the off-nominal process.
A flight data evaluation of this algorithm is described
in Ref. 6.

In Ref. 4, a component tracking filter is used to
achicve the model accuracy required to optimize ¢n-
gine performance. The component tracking filter com-

bines the concept of state tracking and adaptive filter-
ing to minimize enginc/model mismatch. Itis based on
a frequency decomposition of the differences between
the senscd engine paramcters and the model valucs.

This paper presents another method of accounting
for off-nominal operation and other modeling inaccu-
racics. Since any variation from the nominal modcl
would result in a change in the sensed values of the
measured outputs, the off-nominal behavior of an en-
gine is characterized in terms of these changes. Uncer-
tainties associated with any given engine will be repre-
scnted as systematic errors in the sensed output param-
eters. These systematic errors will be accounted for by
augmenting the original state equation with bias states.
A Kalman filter is used to estimate the original engine
states and the bias states. The Kalman filter inputs are
measurements from standard F100 engine control in-
strumentation. The auxiliary output equations for the
unmeasurcd output variables are modified to include
the effect of the bias states.

The concept is validated by applying the developed
filter on both simulation and flight data. For the sim-
ulation data case, the output variables were estimated
by using the data from the available nonlinear enginc
simulation. Both a nominal engine and an engine in
which intentional degradation was introduced to create
off-nominal behavior were considered. For the flight
data case, the estimation process was performed using
actual flight data from an F-15 aircraft. For this case,
comparative results are also presented for the proposed
algorithm and the CDF formulation. Both the sim-
ulation and flight evaluations were carried out for a
flight condition of Mach 0.90 and 30,000 ft, for a part
power setting.

Engine Description

The engine used in this study is the Pratt & Whitney
F100 EMD low-bypass ratio, twin spool, aftcrbum-
ing turbofan cngine’ (Fig. 2). The engine is controlled
by a DEEC, a full-authority digital electronic control
system which performs the functions of the standard
F100 cngine hydromechanical, unified fuel control,
and supcrvisory digital electronic engine control.

Engine Models

Pratt & Whitney has dcveloped a comprehensive
nonlinear dynamic engine modecl, the state-of-the-art
propulsion program (SOAPP) model. This model is



the best representation of the engine and predicts en-
ginc performance with minimal error over the full
power range and {light envelope and for both stcady-
state and transicnt operation. This nonlincar simula-
tion is a high-fidelity model that represents cach com-
ponent in the engine and control but does not run in
real time,

For real-time use, a sct of lincarized SVMs were de-
veloped from the SOAPP model. To cover the entire
flight envelope, 49 models were developed. The model
is sclected as a function of bumner static pressure (P B).
These models compare well with the large scale non-
lincar acrothermal modcl and actual engine test data,
and they can be implemented efficiently in real time.
Figure 3 shows a simulation model for the F100 enginc
based on the state variable formulation.

The SSM engine relationships and trim predictions
(basepoints) are also derived from the SOAPP model.
A two-dimensional table look-up scheduled on 7 val-
ucs of P B and 40 values of afterburner total pressure
(Pry) is needed to represent the steady state informa-
tion. Each SSM consists of a basepoint control vector,
a basepoint output vector, and a sensitivity coefficient
matrix which relates the changes in control positions
to change in outputs.

The PSC algorithm requires the variables listed in
Table 1, which are functions of the engine states and
the input control variables. These variables include
enginc outputs which cannot be measured but are re-
quired to calculate performance measurcs of the en-
gine. An additional set of variables, which are non-
lincar functions of the unmeasured output variables,
arc listed in Table 2. These variables are used to pre-
dict both the engine performance and the constraints
needed to develop optimal engine controllers.

Kalman Filter Concepts

The entire state vector of the system to be controlled
is often assumed to bc measurable. Most of the so-
lutions to optimal control problems are obtained as a
feedback law implementable only if the entire state
vector is available. In most complex systcms the en-
tire state vector cannot be measured, and a suitable ap-
proximation to the state vector must be determined and
substituted into the control law. The system that pro-
duces, in dcterministic sctting, an approximation to the
state vector is called an obscrver.®

Kalman and Bucy solved the optimal observer prob-
Iem in a stochastic environment, and this solution has
had a tremendous impact on optimal filtering theory.?
The Kalman filter represents the most widely applied
and decmonstrably useful result to emerge from the
state variable approach of “modem control theory.”!°

The system is

T=Az+ Bu+ w; )
y=Cz+ Du+ w; 2)

Where A4, B, C, and D are system matrices in statc
variable representation, z is the state vector, u is the
control input vector, y is the output vector, wy is the
state excitation noise, and w; is thc observation or
mcasurement noise. Both w; and w; arc white, un-
correlated Gaussian processes, with intensity @ and
R respectively.

The observer is
=A%+ Bu+ K[y — C% — Du]

where K is the Kalman filter gain,

The optimal observer problem is finding the matrix
K so as to minimize E{e” Re}, where

e=1—1

and R is a positive-definite symmetric weighting ma-
trix. In this problem, E is the expectation operator and
e is the state error vector. If R is a positive-definite
matrix, the optimal obscrver is called nonsingular. The
Kalman filter is the solution to the nonsingular optimal
observer previously outlined. The optimal observer
problem is solved by choosing the gain matrix.!!

K=PCTR!

where P is the state error covariance matrix,
El(z—%)(z—%)7], and is the solution to the matrix
Riccati equation

P=AP+PAT+Q-PC"R'CP

For a time invariant case, the steady state solution for
P is a constant matrix and is a unique nonnegative def-
inite solution of the algebraic Riccati equation

0=AP+ PAT+Q— PCTR™'CP




Figure 4 shows a typical Kalman filter structure used
to estimate statcs and outputs.

Proposed Formulation

In Kalman filter derivation, lincar modcls for the
system dynamics and mcasurcment rclation arc as-
sumed to be adequate for developing optimal estima-
tors. No model is perfect, and a linear model, in
particular, is the result either of intentional approxi-
mation and simplification or of a lack of knowlcdge
about the system being modeled.!? To account for de-
graded engine operation and modeling inaccuracies,
the proposed formulation augments the output vec-
tor by adding a bias vector to represent the uncertain
parameters.> The dynamic equations can thus be ex-
pressed as

T=Axz+ Bu+ w
y=Cz+ Du+b+ w;

where b is the bias vector. The bias vector is estimated
by adjoining b to z and defining a new state vector, 2

with the condition

The state equation can be rewrilicn as

z=A1z+ Biu+ Gw
y=Ciz+ Du+ w2

where
A 0 :E
Al_ Blz PR
0 0 | 0
o
Cy=[C : I G=1 ---
LO_

If the estimate of z is Z, where
T

b

then the Kalman filter estimate is given by

3= A3+ Biu+ PCTR Yy - C15 — Dul

where P is the stcady state solution to the
Riccati equation

0= AP+ PA] + GQGT — PCTR™'C1 P

The auxiliary set of unmecasurcd output variables
(§auz) arc related to the engine states and control in-
puts through the algebraic equation

Jauz = Hz+ Fu

Details of the state variable formulation for the
F100 engine are presented in the appendix. The ( §auz)
outputs arc listed in Table 1.

In spite of the mathematical formalism of the
Kalman filter, engincering insight and experience is
required to develop an cffective opcrational filter al-
gorithm. A mathematical model of both the system
structure and uncertainty is inherently embodied in the
Kalman filter structure. The main design problem is at-
taining an adequate mathematical model upon which
to base the filter. Even after selecting an appropriate
model, the matrices @ and R can be difficult to de-
termine. This is done by a process called “tuning” the
Kalman filter, Itis a trial and error procedure for deter-
mining which matrix values yicld the best estimation
performance for that particular filter structure.

The matrix R was determined by analysis of flight
data available for the F100 engine. The elements of
matrix Q were, however, sclected by evaluating the
performance of the Kalman filter by trial and error.
Figure 5 shows the implementation process used to es-
timatc the output variables for the F100 engine using
the Kalman filter.

This proposed formulation estimates unmeasured
output variables by explicitly modcling the effects of
off-nominal engine behavior as biases on the measur-
ablec output variables.

Results

The proposed estimation algorithm was developed
and cvaluated for a Mach 0.90 and 30,000 ft flight con-
dition. The algorithm was cvaluated by a comparison
with SOAPP simulation results and also by application
to flight data. The flight data results werc compared
with the CDF formulation results for the same data.

Simulation Evaluation

The SOAPP simulation cvaluations consisted of cs-
timating the desired variables using both a nominal and



adcgraded engine. In cach case, the power lever angle
(PLA) was held to 37° for 15 scc and then stepped up
to 43° and held constant for the remainder of the run.

Measured outputs were obtained from the SOAPP
simulation and were corrupted with noise, as shown
in Table 3. These arc typical values obtained from
flight data. The measurements with noise and the
values of the control variables were entered into the
estimation algorithm and the desired estimates were
obtained. The Kalman filter state vector, a perturba-
tion of the steady statc conditions, was initialized to
zero for all states.

The algorithm needed to generate consistent state
cstimates which were robust with respect to the mea-
surcment covariance matrix @ (the only variable se-
lected by trial and crror). An important aspect of the
development is determining unmecasured output vec-
tor, §auz- Inconsistent estimates of the states would
give different values of §,4; for different values of Q
when applied to the same data.

The state vector estimates converged to the same
value for different values of Q. This was evaluated
for values of Q =T and Q = 10I. The diffcrence in the
estimated states for @ =1 and Q = 101, for a nom-
inal engine, is shown in Fig. 6. This figurc shows
that the state cstimates converge to the same value and
the effect of change in Q on the stcady-state response
is minimal.

The five measured output variables obtained from
thc SOAPP for a nominal engine were compared with
the estimates of these variables obtained from the filter
(Fig. 7(a)). The prediction valucs subtracted from the
_ simulated measurements were held constant through-
out the run. These values were the same as the sim-
ulated measurements at the beginning of the run, ac-
counting for the excellent comparison over the initial
interval. The Kalman filter was not updated in this
evaluation, so the comparisons indicate that the model
is quite robust. The comparisons are very good in spite
of the large change in the operating conditions. The
CDF bascd formulation would have used five different
modecls for the PB change of this mancuver.

Figure 7(b) shows the mcasurcment bias estimatcs,
As expected, they are nearly zero until the PLA is in-
crcased. As the enginc attains a new operating condi-
tion, the bias parameters increase to Ievels which ac-
count for the cffects not modeled in the SVM.

To assess the condition when significant differences
exist between the measured data and the predicted
data, the following nominal biases were added to
the simulated flight data: A N; (fan rotor speed) =
50.0, AN, (core rotor specd) = 50.0, APB = 2.0,
ATr, ; (low urbine inlet total temperature) = 30.0, and
A Pr, = 0.5. The results of this evaluation (Fig. 8(a))
show that the tracking of the five measurcments is
again very good. The final valucs of the bias estimatcs
(Fig. 8(b)) are the sum of biases ¢stimated in Fig. 7(b)
and the biascs placed on the simulated measurements
as previously listed.

In Fig. 9, estimates of the unmeasured output vari-
ables (§,.42) are compared with the actual values ob-
tained from the SOAPP. The estimatcs show good
tracking of the simulation valucs.

Simulation evaluations were then carried out for
a degraded engine by simultancously introducing the
following deteriorations: (a) high turbine efficiency is
2.5 percent below nominal, (b) low turbine efficiency
is 2.5 percent below nominal, (¢) compressor airflow
deviation is 1 Ib/sec less than nominal, and (d) the fan
airflow deviation is 5 Ib/sec less than nominal,

The results for the simulated degraded engine arc
presenled in Fig. 10. These results are similar to the
results of Fig. 7 and demonstrate the adaplability and
robustness of the proposed estimator to degraded en-
gine performance. Again, the Kalman filter was not
updated during the evaluation and the predicted con-
stant values subtracted from the simulated data were
the same as those for an engine that was not degraded.

Flight Data Evaluation

The Kalman filter formulation was also evaluated on
flight data obtaincd on the NASA F-15 research air-
craft. The flight data was obtained at Mach 0.90, an
altitude of 30,000 ft, and a PLA of 43.5°. The time
history of the test data (Fig. 11) starts with no bleed air
being cxtracted from the test cngine. Approximately
40 scc into the run, the pilot manually changed the
blced switch to extract all the aircraft blced air require-
ments from the test engine. This mancuver was de-
signed to simulatc a change in engine operating effi-
ciency. The engine control system increased fuel flow
(W) to maintain the scheduled fan speed, resulting in
an increasc in T, 5. After holding this bleed condition
for approximately 70 scc, the bleed was again switched
back to the initial no bleed air condition.



The Kalman filter estimation results are shown in
Fig. 12. Figure 12(a) shows that the filter tracks the
flight mcasurements accurately. Initial discrepancics
occur because the bias estimates start at zero; how-
cver, this startup transient is brief, with good track-
ing occurring in approximately 20 sec. Although
the tracking quality is slightly worse at the time the
bleed switching occurs, the filter rapidly adapts to
the simulated change in engine efficicncy. The bias
estimatcs, shown in Fig. 12(b), converge rapidly to
stcady-state values as the engine statc is changed from
one condition to another. The initial startup tran-
sient could be minimized by initializing the bias esti-
mates with the actual values of the biascs for the given
flight condition.

Figure 13 shows the results from the proposed
formulation compared with the corresponding results
from the CDF formulation. The results were obtained
using the flight data showninFig. 11. The results show
that the performance obtained by the proposed method
compares favorably with the CDF procedure. A signif-
icantly improved startup transient performance is cvi-
dent. Figurc 14 presents similar comparisons for the
estimatcs of nommally unmecasured output variables.
Figure 14(a) shows the estimate of compressor inlet to-
tal temperature (T, ;) and the measurcd values. The
superiority of the proposced formulation is clearly cv-
ident, if the measurcment of Tr, ; is considered reli-
able. Figure 14(b) shows thc comparative cstimatcs of
corrected fan airflow (WCrp4n). The values are com-
parable, with better transient performance for the pro-
posed formulation,

Concluding Remarks

An approach has been proposed to estimate the un-
measured or auxiliary output variables of a turbofan
F100 engine by using Kalman filter concepts. The
approach is based on explicitly modcling the effects
of off-nominal engine behavior as biases on the mea-
surcd output variables. Results are presented for esti-
mates of the output variables and are compared with
values obtained from detailed nonlincar simulation of
the cngine. The evaluation was carried out for both
a nominal engine and an engine in which intentional
deterioration was introduced. The proposed filter was
also cvaluated for output estimation using actual F-15
flight data.

The formulation is robust with respect to the value
of stalc covariance matrix (J. A critical component
of the performance sccking control (PSC) problem for
the F100 enginc is determining consistent values for
auxiliary output variables. Consistent cstimates for the
states were obtained for different values of () and thus
consistent estimates of the auxiliary output variables
are ensured.

The proposed estimation algorithm was able to ac-
curately predict the values of the output variables for
the simulation studics for both nominal and degraded
engine conditions. The proposed algorithm has been
validated by comparing its estimates with the values
from the detailed nonlincar simulation, and it has per-
formed well on flight data. A comparative study of
the proposed algorithm results with component devia-
tion factors (CDF) results gave additional proof of the
validity of the concept. Unlike the CDF method, the
proposcd algorithm docs not require detailed model-
ing of the engine degradation process. This formula-
tion has a wide range of application because it is not
restricted or tailored to the particular application de-
scribed in this paper.
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Appendix—State Variable Auxiliary Output Estimation Formulation for an F100 Engine

For the system being considered, the complete state
variable model is

§2=A16z+ B16u+ Guy
by =Chéz+ Déu+ wy

where 1 indicates augmented system matrices, and

SNy
6N2
§TMT §Wi SNy
Nlb SA] 5N2
2= N |%4=| scrvy |V = gﬁTé
Pr SRCVV 5T
PB T4.5
TT4.55

where TMT is the turbine metal temperature, b de-
notes the output bias term, CIV'V is the fan inlet guide
vane angle, RCV'V is the compressor stator vane an-
gle, and

A 10 w:
A= | --- By=1) -
0 ! 0 | O
L
C=[C ' I G=| .-
L 0 _J

where A, B, C, and D are constant perturbation ma-
trices, numcrically derived from the SOAPP, w; is the
statc noise with covariance @, and wy is the mcasure-
ment noise with covariance R. The clements of R arc
obtained from a priori flight data, while those of Q arc
sclected by trial and error,

The auxiliary sct of unmecasured output variables
(Jauz) listed in Table 1, is given by

Uauz = Hbz + Féu + y,

where
H=[H : H;]

and A, reflects the effect of estimated biascs and its
clements arc derived from the SVM, Hy and F arc
perturbation matrices derived from the SOAPP, and g,
is the vector of predicted trim values for the auxiliary
output variables, which is obtained from the SVM,



Table 1. Linear auxiliary output variables, PSC

algorithm rcquirements.

Prys
PB
Pry
Tr, 5
Tr,
TT4
Try s
Try

compressor inlet total présshre
bumer static pressure

afterbumncr inlct total pressure
compressor inlet total temperature
bumer inlct total temperature
burner exit total temperature

low turbine inlet total temperature

afterbumer inlet total temperature

Table 2. Nonlinear engine variables.

Dnoz nozzle drag
Dgpay ram drag

Fe gross thrust
Fnp net propulsive force
P, nozzle throat total pressure

SMFr  fan stall margin
SMpyc high compressor stall margin

T, nozzle throat total temperature

Table 3. Mcasurement noise statistics.

Parameter Standard deviation

WCran corrected fan air flow M 7 rpm
WCype corrected compressor air flow N, 7 rpm
PT6 0.3 Ib/in
Pr, 0.6 Ib/in
Tty s 4 °R
»C DEEC/propulsion/aircraft system )
State variable model K
> alman
Steady state model filter
Nozzle Nonlinear Inlet Engine
model <+—»] equations [ model - mfde| il
Propulsion system
model
Optimization
algorithm
900178

Fig. 1 The performance sccking control adaptive control system.

10




* DEEC sensors
1 Instrumentation

$ Calculated parameter

Combustor
Afterburner
Fan Compressor
High pressure turblne
Low pressure turbine
WCran+ wch ::
ey c TMT:I:

9C0179

Fig. 2 The F100 engine and sensor ocations.
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A

Initial conditions

Y

X vector

Fan rotor speed, N4
Core rotor speed, N,

Turbine metal
temperature, TMT

- + 8
X - X »| c : s y
/ + 7 + +
PB X = f(PB& Pr )
Pre f
|V, = f(PB&PT )
u vector Yy vector

Main burner fuel
flow, W F

Nozzle area, A J

Fan inlet guide
vane angle, CIVV

Compressor stator
vane angle, RCVV _J

Fan rotor speed, N4
Core rotor speed, No

Afterburner inlet total
pressure, Py 6

Burner static
pressure, PB

Low turbine inlet
temperature, T
P Tas

Fig. 3 The F100 cngine simulation bascd on the state variable model.
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A
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Fig. 4 The Kalman filter structure.
PB,Pr . A
SVM trim
:g_
Ym dy
T > Proposed A
Kalman Yaux
Um b i »
u - filter
+
Ut
F A
Flight data Nonlinear
calculations
A .
Z= [Ny, Ny, TMT, Nypy , Napy, P, PB, TT4.5b]
u= 'WF,AJ,CNV,RCW]'
y =| Ny, Ny, PB, Py, TT4.5].
A [ '
Yaux=|PT, 5 TT,5 5 75774 T1g WCFAN: WC HPCZ]
A [ [
Yn.L.= [SMe> SMyc: Dpam Pnoz: Fre: For Ty Py o

Fig. 5 Modificd cstimation process using the proposcd Kalman filter.
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Time, sec 900183

Fig. 6 The F100 enginc simulation state estimates for a nominal engine at @ =T and Q = 101, PLA increased from
37°t0 43° at 15 scc.
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Fig. 6 Concluded.

15

40

50

60

500183



— Measured

—-—= Estimated
8000
o~
N¢» |
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11,200 —
11,000 |~
Nas
rpm 10,800 |-
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(1) Mcasured and estimated enginc outputs.

Fig. 7 The F100 engine simulation parameters for a nominal engine, with PLA increased from 37° 10 43° at 15 sec.

16

| o——L LR YW T ke e e



60
Nyp>
pm 40
20
0
80
\ 60
2b’
pm 40
20
0
4
2
F:-rfst), (J
Ib/in? \
-4
2
PBy, 1
bin2 0
-1
-2
40
20
Ta5p’ 0
°R
.20
-40

| ] | J

—
] 1 l l | I 1 1 _J
l 1 l 1 I | 1 1 ]

(b) Bias ¢stimates.

Fig. 7 Concluded.
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(a) Mcasured and cstimated engine outputs.

Fig. 8 The F100 cngine simulation parameicr cestimates with biased measurements for a nominal engine, with
PLA incrcascd from 37° to 43° at 15 scc.
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Fig. 8 Concluded.
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Fig. 9 The F100 cngine simulation auxiliary output estimates for a nominal engine, with PLA increased from 37°

10 43° at 15 scc.
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(a) Enginc outpul cstimatcs.

Fig. 10 The F100 cnginc simulation parameter cstimates for a deteriorated engine, with PLA incrcased from 37°
10 43° at 15 scc.
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(b) Bias cstimates.

Fig. 10 Concluded.
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(a) Mecasurcd output variables.

Fig. 11 The F-15 airplanc mcasured cngine parameters during compressor bleed variations at Mach 0.90, an
altitude of 30,000 ft, and PLA = 43°,
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(b) Mcasurcd control variablcs.

Fig. 11 Concluded.
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(a) Oulput cstimatcs.

Fig. 12 The F100 engine paramcter cstimates from the flight data in Fig. 11.
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Fig. 12 Concluded.
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--- Proposed formulation

— CDF formulation
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Fig. 13 Proposcd formulation estimated outputs from flight data compared with CDF formulation estimates from
flight data.
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(a) Compressor inlet total temperature estimatces.

Fig. 14 The proposcd formulation and the CDF formulation enginc parameter estimates from flight data compared
with measured engine parameters.
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(b) Corrected fan airflow estimates.

Fig. 14 Concludcd.
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